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TURBOMACHINERY BLADES 
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SUMMARY 

A fully three-dimensional compressible inverse design method for the design of radial and mixed flow 
turbomachines is described. In this method the distribution of the circumferentially averaged swirl velocity 
r vo on the meridional geometry of the impeller is prescribed and the corresponding blade shape is computed 
iteratively. Two approaches are presented for solving the compressible flow problem. In the approximate 
approach the pitchwise variation in density is neglected and as a result the algorithm is simple and efficient. 
In the exact approach the velocities and density are computed throughout the three-dimensional flow field 
by employing a fast fourier transform in the tangential direction. The results of the approximate and exact 
approach are compared for the case of a high-speed (subsonic) radial-inflow turbine and it is shown that the 
difference between the blade shapes computed by the two methods is well within the manufacturing 
tolerances. The method was validated by calculating the flow through a designed high-speed radial-inflow 
turbine by using a three-dimensional inviscid Euler solver. Very good correlation was obtained between the 
specified and computed T V&distributions. 
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1. INTRODUCTION 

There are two main approaches to the problem of aerodynamic design of turbomachinery blades, 
the direct and the inverse approach. In the direct approach the flow is computed for a given blade 
geometry, while in the inverse approach the required flow distribution is specified and the 
corresponding blade geometry is computed. 

In recent years, as a result of development in computational fluid dynamics, considerable 
progress has been made in the numerical solution of the direct problem of turbomachinery design. 
For example, Denton' has numerically solved the three-dimensional Euler equations of motion 
and Dawes' and Hah et aL3 have solved the 3D Navier-Stokes equations. Such methods are of 
substantial value to the designer, who can use them to analyse the flow conditions along vanes 
and blades. Ideally, it should then be possible to modify the blade shape if the flow conditions are 
not those required. In practice, however, there are difficulties in determining the degree and 
direction of any modifications, which difficulties are compounded by the fact that a change of 
blade shape at any location affects the flow at other parts of the blade. This is particularly so in 
the case of radial turbomachinery, where the blade geometry and the flow field are complicated 
and three-dimensional. As a result, the most rational approach for designing radial turbo- 
machinery blades is to use a three-dimensional inverse design method. 
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A large number of inverse design methods are available in two dimensions and are widely used 
in the design of axial turbomachinery blades (e.g. References 4-7). Ideally one would like to 
prescribe the pressure or velocity distribution on the pressure and suction surfaces so that the 
blades are designed with optimized boundary layers (e.g. References 4 and 7). However, this type 
of design specification has no control over blade thickness and could result in an ill-posed 
problem. For example, Lighthil14 found that it is impossible to specify the velocity distribution on 
the pressure and suction surfaces together with the upstream and downstream boundary condi- 
tions. As a result some authors prefer to prescribe the velocity (or pressure) distribution on the 
suction surface and the thickness distribution (e.g. Reference 9, whereas others have proposed 
methods in which the blade pressure loading is prescribed together with a thickness distribution 
(e.g. Reference 8). 

In three dimensions, additional constraints on the choice of the design specification are 
required in order to avoid ill-posed problems. For instance, the value of the pressure along the 
hub of a radial turbomachinery vane is affected by the pressure along the shroud and as a result it 
is not possible to specify the pressure on the hub and shroud independently. The main implication 
of this fact is that very few three-dimensional inverse design methods are available at present. To 
the author's knowledge only five three-dimensional inverse design methods have been reported in 
the l i t e r a t ~ r e . ~ - ' ~  In all these methods either the blade loading or the circulation distribution is 
prescribed together with a thickness distribution. However, all these methods are affected by 
shortcomings which limit their application to problems of practical interest. The method of Zhao 
et aL9 is limited to high-solidity blades, while the methods of Ockuroumu and McCune" and 
Falcao" are limited to the design of annular cascades of infinitely thin blades with constant hub 
and tip radius and small camber in incompressible flow. Although the methods of Tan et al.," 
Borges13 and Ghaly and Tan'4 can cope with highly loaded blades, they are also limited to 
incompressible flow. 

This paper is concerned with the development of a three-dimensional inverse design method 
applicable to radial and mixed flow machines in subsonic compressible flow. The method is an 
extension of Hawthorne et al.'s15 approach to the design problem in which the blades are 
represented by sheets of vorticity whose strength is determined by a specified distribution of 
circumferentially averaged swirl velocity Y V, ,  (directly related to the bound circulation 27rr V0) 
defined as 

where B is the number of blades. In this way it is possible to find an expression for the bound 
vorticity in terms of and the blade shape. From the vorticity it is then possible to calculate the 
velocity field, which is decomposed into circumferentially averaged and periodic components, by 
using the Clebsch formulation of steady rotational flow. The blade shape is determined by 
imposing the inviscid slip condition (i.e. blade shape aligned with the local velocity vector). Since 
the vorticity depends on the blade shape and the blade shape depends on the velocity field, the 
problem is solved iteratively. This method not only computes the blade shape but can also 
provide detailed information about the flow distribution (i.e. velocity, pressure, etc.) through the 
designed blade 'row. 

The original application of the method was confined to the design of 2D cascades of infinitely 
thin blades in incompressible flow. The method has since been extended to the three-dimensional 
design of axial machines by Tan et al." and applied to the case of arbitrary meridional geometry 
by Borges13 using the finite difference approach and by Ghaly and Tan'4 using the finite element 
approach. 
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This paper describes how the calculation for compressible flow can be performed by computing 
velocities and density throughout the 3D flow field. A second, approximate, approach to solve the 
compressible flow problem is also presented. In this approach the variation of density in the 
pitchwise direction is neglected and an approximate form of the continuity equation is used. In 
both approaches the partial differential equations modelling the flow field and the blade 
boundary condition are solved numerically by a using finite difference method on a body-fitted 
curvilinear computational plane. 

2. DESCRIPTION OF THE METHOD 

In the theory which will be presented in this paper the following assumptions will be made. 

(a) The flow is steady, inviscid and uniform at the inlet, so that the only vorticity is the bound 
vorticity on the blades (Kelvin’s theorem). Therefore we may express the vorticity in terms 
of a periodic delta function 

Q = v x V =(VrV, x V a )  6,(a), 
where 

2n 
a = O-f(r, z)  = n- B 

represents the blade surfaces, 0 is the tangential co-ordinate of a cylindrical-polar co- 
ordinate system and f ( r ,  z) is the angular co-ordinate of the point on the thin blade surface, 
or the so-called wrap angle. 6,(a) is the periodic delta function given by17 

The tangential mean of the delta function, 6,(a), is unity and hence the mean vorticity is 
given by 

i i = V x V = ( V r V , x V a ) .  (4) 

(b) There is no trailing shed vorticity. 
(c) The blades have zero thickness, so that they can be represented by a single sheet of 

vorticity. However, the blade blockage effects are accounted for by using a mean stream 
surface thickness parameter in the continuity equation of the mean flow. 

(d) The working fluid is a perfect gas and the flow is subsonic. 

2.1, Calculation of flow field-approximate approach 

In this subsection we shall derive the governing equations of the mean and periodic flow based 
on the assumption that the pitchwise variation in density is negligible. For this purpose let us 
consider the continuity equation in steady flow in the relative frame of reference, 

v * p w = o .  (5 )  

Since the flow field is to be solved by decomposing it into circumferentially averaged and periodic 
components, the relative velocity W can be written as 

W = v - w x r + v = W ( r , z ) + v ( r , 8 , z ) ,  (6) 

where v is the periodic component of velocity, W is the circumferentially averaged component of 
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relative velocity, o is the rotational velocity and r is the position vector. By neglecting the 
pitchwise variation in density, it is possible to show that the continuity equation of the mean flow 
is reduced to 

V.W= -W.Vlni?. (7) 
To account for blade blockage effects, a stream sheet thickness distribution can be included in 

this equation, namely 

where 
v . ( pBf W) = 0, (8) 

te is the tangential thickness and r is the radius. The normal thickness (t,) distribution obtained 
from stress considerations is used in conjunction with the estimated blade wrap angles to 
compute the tangential thickness from 

The continuity equation of the mean flow, equation (S), can be implicitly satisfied if we define 
a stream function Y, namely 

where pi is a reference density and Y is the so-called Stoke stream function for three-dimensional 
axisymmetric flow. To obtain an equation for the unknown stream function, let us consider the 
tangential component of the mean velocity, 

Now, if we substitute (4) for the LHS of equation (12) and use (1 1) to express the velocities in terms 
of the stream function, we can derive the following equation for the unknown stream function of 
the mean flow. 

where the RHS is zero outside the blade region. This elliptic equation is solved subject to 
boundary conditions at the endwalls and upstream and downstream boundaries. The boundary 
condition at the endwalls (i.e. hub and shroud) is the no flow condition through these boundaries. 
This may be expressed as 

V.n=O, 

where n is the unit vector perpendicular to the endwalls. This implies that the hub and shroud are 
the streamlines of the flow and so the Dirichlet boundary condition Y =constant applies at the 
endwalls. 
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The far upstream boundary condition is obtained from the known mean velocity far upstream 
(which is a design specification) by using 

1p,dY - 

r p  as - V - m - n r  

where s is the distance along the far upstream boundary and n is the unit vector in the meridional 
plane normal to the far upstream boundary. In the absence of shed vorticity the velocity far 
downstream, Vm , will be uniform and hence the boundary condition is given by equation (14). By 
solving equation (13) subject to the above boundary conditions, the mean flow velocity field is 
determined. 

For the calculation of the periodic flow let us consider the periodic component of vorticity, 
which is given by 

However, Lighthill17 has shown that 
A=J~-~=(v~T/,xv~)cG,(~)-~~. (15) 

Sr(a)=dp(a)-l, (16) 
where S'(a) is the first derivative of the periodic sawtooth function S(a) with respect to a. The 
sawtooth function can be expressed in a Fourier series of the form 

m AnBa 

S(a)=Re L. ,,= - inB (17) 

From equations (15) and (16) we obtain 

f i = ( v r V g ~ v a ) ~ ( a ) .  (18) 

(19) 

A Clebsch formulation for the periodic velocity which satisfies (18) is 

v(r, 8, z)=V@(r,  8, z)-S(a)VrVe, 

where @ is the potential function of the periodic flow. In the absence of circumferential variations 
in density the periodic component of the continuity equation can be written as 

V . v =  -v.Vlnp. (20) 

(21) 

Taking the divergence of (19) and using the continuity equation (20), we get 

v2@ = S(a)VZrVe + (Va * V r  re) sr (a) - v  v In p ,  
where the first two terms on the RHS will be zero outside the blade row. Since the flow is periodic 
in the pitchwise direction, we can express the potential function in terms of a Fourier series of the 
form 

m 

@(r, 8, z)= C @,,(r, z) einBe. (22) 
n= - m  

By expanding @ and the RHS of equation (21) in terms of a Fourier series in the tangential 
direction, we can derive the following equation for the nth harmonic of the potential function of 
the periodic flow: 

d2@, 1 a@n a2an a@,, aln(p/pi) a@n dln(p/pi) n2B2 
ar2 r ar az2 a Z  a Z  ar ar 

-- -+--+-+- +- r 2  a n  
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In order to solve (23) for the unknown Fourier coefficients of the potential function of the periodic 
flow, boundary conditions should be applied on the four boundaries of the physical domain. At 
the endwalls the periodic velocity normal to the hub and shroud must be zero. This condition can 
be expressed by 

v*n=O. 

Substituting the Clebsch formulation for the periodic velocity (19) in the above expression, the 
following form of the wall boundary condition is obtained: 

where the partial derivatives are taken in the direction normal to the endwalls. 
Far upstream and downstream the flow is uniform. This is the result of the fact that the periodic 

velocity dies away as the upstream boundary is approached. In the absence of shed vorticity the 
same phenomenon occurs as the far downstream boundary is approached. This condition can be 
implemented by imposing 

@" = 0. (24b) 
This implies zero tangential and axial components of periodic velocity far upstream and zero 

tangential and radial components of periodic velocity far downstream. Thus, for each of the 
harmonics n of the potential function of the periodic flow, equation (23) is solved subject to 
Neumann boundary conditions (24a) at the endwalls and Dirichlet boundary conditions (24b) far 
upstream and downstream. 

The equations modelling the flow field have to be solved subject to the Kutta-Joukowski 
condition, i.e. the static pressure on the upper and lower surfaces of the blades must be equal at 
the trailing edge. The velocity jump across the blade has been shown by Tan et al." and BorgesI3 ~. 

to be given by 

The pressure (or enthalpy) jump across the blade can be determined from equation (25) by 
using the irrotational form of the inviscid energy equation (see Section 2.3). Thus it is possible to 
show that16 

h+ - h - =-(Wbl' VYVO), 

where w b l  is the relative velocity at the blade. This simple expression offers a straightforward 
method of satisfying the Kutta condition by setting the RHS of (26) to zero so that 

(Wbl. Vr Ve) = 0, 

i.e. the gradient of rVo along the meridional projection of the blade along the streamlines must be 
zero. This condition is implicitly satisJied by specifying an r Ve distribution with zero meridional 
gradient at the trailing edge. 

(26) 
2x 
B 

2.2. Calculation of flow j i e l k x a c t  approach 

In the previous subsection a description of the basic approach used for the computation of the 
mean and periodic flow fields was given. As a first approach the pitchwise variation of density was 
neglected and hence an approximate form of the continuity equation was used. The above 
approximate approach has the advantage that the density does not have to be computed 
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everywhere in the three-dimensional flow field. Although this mean density approach simplifies 
the numerical computation of the problem, it introduces errors in the computation of the flow 
field. In this subsection we shall present an approach for the solution of the mean and periodic 
flow fields when the exact forms of the continuity equations are used. The results of this exact 
approach will be used in Section 3 to investigate the effects of the mean density assumption on the 
accuracy of the method. 

When the pitchwise variations in density are considered, the circumferentially averaged 
component of the continuity equation takes the form 

V * W =  -W*Vlnp. (27) 
Equation (27) cannot be used directly to define a stream function. Therefore we define a special 
mean density so that 

The value of pm is determined by integrating the equation 

v * pm w =o. (28) 

Then equation (28) can be used to define a stream function and, by using a procedure similar to 
that of the approximate approach, the governing equation of the mean flow can be derived. 

In this case the periodic flow continuity equation is given by 

V * v = W * V In p - W Vln p . 
Thus equation (21) is modified to 

v2@ = ~(cr)v~rV~+(vcr vrV0) s'(cr)+w - Vln p - w - v In p . (31) 

Equation (31) is very similar to (21) apart from the third and fourth terms on the RHS, whose 
determination requires the computation of the velocity and density throughout the flow field. The 
problem is simplified a little by remembering that the flow is periodic in the tangential direction 
and hence the potential function may be expanded in terms of a Fourier series in that direction. 
For this purpose the Fourier coefficients of the third and fourth terms on the RHS of (31) have to 
be computed. However, since the differential equation is solved numerically, by using the finite 
difference approximations, the flow quantities are only known at discrete points inside the 
computational domain. Therefore numerical integration has to be used for the determination of 
the Fourier coefficients of these quantities. This is inaccurate, rather time-consuming and 
cumbersome. 

Fortunately, there is a simple relationship between the Fourier transform of a function and its 
Fourier coefficients. Hence the discrete Fourier transform can be used to find the Fourier 
coefficients of the third and fourth terms on the RHS of (31). This has two advantages: firstly, 
there is no need for numerical integration; secondly, the discrete Fourier transform can be 
computed much more efficiently by using the fast Fourier transform algorithm. 

The potential function may then be expressed in terms of an inverse discrete Fourier transform 
of the form 

N/2 - 1 

@(r, 6,, z)= @,,(r, z) eiknej, (32) 
n= -NI2 

where 6, = jA6, j = 0,1,2,3, . . . , N, gives the values of 6, the tangential co-ordinates of the points 
on a uniformly spaced grid in the tangential direction, with spacing AO. The set k, should be 
chosen to make the function exp(ik,Bj) periodic and equally spaced and it should also reduce the 
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aliasing effects which can be found whenever a continuous function is sampled at discrete 
intervals. One such function is 

2x11 N N 
2 2 N A 8  

for n=--, . . . , O , .  . . , - - 1 .  k,=- (33) 

Thus by using equations (32) and (33) in equation (31), we get the following governing equation 
for the periodic flow: 

when n = - N J 2 , .  . . , - 1 ,  1,. . . , N J 2 - 1  and 

l N  
RJr,  z)=- 1 (W-Vlnp)e-i2"jn'N. 

N j = 1  
(35) 

The term obtained when n is equal to zero in equation (34) corresponds to the Clebsch 
formulation of the mean flow continuity equation and therefore has to be neglected in the 
solution of the periodic flow field. Since the potential function of periodic flow is a real function, 
its Fourier transform has the property @-,=@:, where n = l ,  N / 2  and the asterisk denotes 
complex conjugation. As a result equation (35) is solved for one half of the frequency spectrum k, 
given in equation (33) and subjected to the boundary conditions discussed in Section 2.1. 

2.3. Calculation of density 

body forces can be written as 
The first law of thermodynamics applied to a steady flow process in the absence of viscous and 

W.VH*=O, (36) 
where W is the relative velocity vector and H *  is the rotary stagnation enthalpy or rothalpy. In 
the case of uniform flow at the inlet this equation reduces to 

H* = h++(W * W)-+02r2 =constant, 

where w is the rotational speed. By using the perfect gas equation and isentropic relations, it is 
possible to show that 

In the case of the approximate approach the latest values of mean velocity, calculated from 
equation ( 1  l ) ,  are used in equation (37) to obtain a new estimate for the mean density. In the exact 
approach the full three-dimensional velocity field is used in (37) in order to obtain the density 
throughout the three-dimensional flow field. The mean velocity components are again obtained 
from equation (1 l), while the periodic velocities are computed by using the inverse Fourier 
transform and equation (19). For example, the radial component of the periodic velocity is 
computed from 
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where IFT represents the inverse Fourier transform. The following procedure is then used to find 
the RHS of the continuity equation, W Vln p .  

(i) The Fourier transform of the natural logarithm of the density p, is computed. 
(ii) The derivative of density in the tangential direction is then computed by taking the inverse 

Fourier transform of (ik, p , / r ) ,  while the axial and radial derivatives of density are 
computed by calculating the inverse Fourier transform of the corresponding derivatives 
of p,. Thus W-Vlnp is computed and then used in equation (35) to find R,, which is 
required for the RHS of equation (34). 

2.4. Calculation of blade shape 

Once the flow field has been determined, it is then possible to compute the blade shape by using 
the blade boundary condition that the blade must be aligned to the velocity vector there. This 
condition can be expressed as 

wbl* vI% =o, (39) 
where Va is a vector normal to the blade surface and wbl is the relative velocity at the blade 
surface (Wbl =(W + + W -)/2, where W + and W - are the velocities on the upper and lower 
surface of the blades). Expanding (39), 

where f is the wrap angle. Equation (40) is a first-order hyperbolic partial differential equation 
which has to be integrated along the meridional projections of streamlines on the blade surface in 
order to find the blade shape. The integration, as in the case of other initial value problems, 
cannot be completed without some initial condition on f. This initial value will be called the 
stacking condition ofthe blade. In this method the stacking condition is implemented by giving as 
input the values of blade wrap angle f along a quasi-orthogonal, for example at the leading edge. 

2.5. Numerical algorithm 

The partial differential equations for the computation of the flow field, i.e. equations (13), (23) 
and (34), and the blade shape, equation (40), are to be solved numerically by a finite difference 
approximation in the highly curved and complicated meridional geometry of radial and mixed 
flow machines, in which the boundaries are not coincident with the co-ordinate lines. As a result 
the implementation of the boundary condition will require interpolation between points nearest 
to the boundary, which can introduce unacceptable errors in the solution, particularly because 
the boundary conditions have a dominant influence on the character of the solution. To reduce 
this error, an algebraic transformation of co-ordinates from ( I ,  z )  to (5,  q )  was used, so that in the 
new curvilinear co-ordinate system the co-ordinate lines are coincident with the boundaries 
(i.e. hub and shroud coincide with lines of q =constant and upstream and downstream boundaries 
correspond to lines of 5 =constant); see Figure 1. More information on the transformation to the 
body-fitted co-ordinate system can be found in Reference 18. The form of the differential 
equations in the computational plane are presented in Appendix I. 

The governing equations of the flow field in the computational plane, equations (46), (48) and 
(49), were discretized by using a second-order-accurate finite difference formula. The boundary 
conditions were then applied and the resulting simultaneous algebraic equations were solved 
iteratively, using Brandt'' cycle C multigrid strategy to increase the rate of convergence. More 
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I n  

Figure 1. Computational mesh (145 x 49) 

details on the discretization procedure and the form of the discretized equations can be found in 
Reference 16. The blade boundary condition, equation (50), and equation (29) for the determina- 
tion of the special mean density pm were discretized by using a scheme in which the partial 
differential equations are satisfied at the midpoints of the grid rather than at the grid points. This 
technique is sometimes referred to as the Crank-Nicholson m e t h ~ d . l ~ * ~ ~  

To summarize, the following procedure is used for the iterative computation of the blade shape. 
First, the meridional geometry, design velocity triangles, inlet temperature, gas properties, 
stacking condition and r V,-distribution are specified. Then an initial guess for the blade shape is 
obtained from the specified r& and assuming uniform velocity. At this point the main iteration 
loop starts, in which the mean flow and then the periodic flow are computed. By using the mean 
velocities and the periodic velocities at the blade, the blade shape is determined and the above 
procedure is repeated until convergence is obtained. If the blade shape is computed without 
considering the periodic velocities, the resulting blade shape will correspond to the limiting case 
of an infinite number of blades or the so-called actuator duct (axisymmetric) solution. 

2.6. Numerical dijiculties 

It was mentioned earlier that in the design method the blades are represented by sheets of 
vorticity. As a result the presence of the solid endwalls at the blades is modelled by the reflection 
of the vortex sheet (representing the blades) at the endwall. When the blades do not meet the 
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endwalls at right angles, the vortex system, consisting of the vortex sheet representing the blade 
and its reflection, results in a kinked vortex. This is illustrated in the diagram below, where AB is 
the vortex sheet representing the blade and AB‘ is the reflection through the solid wall CD. BAB’ 
is the kinked vortex at the centre of which the induced velocity becomes infinite. 

B 
\ 

.~,,,.,......,,,,...,,...,,.. ..*.I * .,,,,,,,,,,,,,,,<,,,,,,,,,, ..,,,,,,,111,,,,,,,,,,,,,, +--- 
The presince of this type of singularity was first reported by Kuchemann,’l who investigated 

the flow at the junction of swept wings. This singularity has been found in the investigation of the 
flow in cascades of swept and also in the analysis of flow through cascades of unswept 
blades with varying spanwise c i r cu la t i~n .~~  

The presence of the singularity at the endwalls can also be interpreted as being due to the 
tangential component of bound vorticity which does not vanish at the walls. The bound vorticity 
in the present problem is given by equation (1). Therefore, to remove the singularity, we require 
that: 

where n is normal and s is tangential to the endwalls. NOW, Tan et aZ.lz by considering the no flow 
condition at the endwalls have derived the following relationship: 

In general, V u -  Vrv, ZO, and if af/an is continuous at the endwalls, then we can see from (42) 
that when arv,/an is zero at the walls then af/an must also be zero at the walls. This condition 
(first suggested by Smithz3) forces the tangential component of the vorticity to vanish at the 
endwalls and thereby removes the singularity. However, in the present problem there are strong 
indications that af/an is discontinuous. For example, the values of af/an obtained from the code 
by Tan et a1.l’ (who expanded f in the spanwise direction by using a cosine series) exhibited 
a clear Gibbs’ phenomenon near the endwalls. Furthermore, the values of azf/anz seemed to 
show a delta function behaviour near the endwalls. Further investigations showed that it is 
possible to remove this singularity by putting both arV,/an and af/an to zero at the endwalls. As 
a result the endwall boundary condition (24a) for the potential function of the periodic flow is 
reduced to 

8% 
an 
-=O. (43) 

More detailed information on the nature of the endwall singularity can be found in Reference 16. 
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3. RESULTS 

The three-dimensional inverse design method just described was applied to the design of a high 
(subsonic) speed radial-inflow turbine. The turbine was 135 mm in diameter and ran at a tip speed 
of 430 ms-l with a mass flow rate of 0.793 kgs-' and a design pressure ratio of 2-3. For the 
application of the method the meridional geometry waiprescribed by a grid consisting of 145 
quasi-orthogonals and 49 uniformly spaced quasi-streamlines. A plot of the grid used is shown in 
Figure 1; 35 quasi-orthogonals were used upstream of the blade and 77 quasi-orthogonals were 
used inside the blade region. In the Fourier expansion for the velocity 16 harmonics were 
considered. 

The other inputs to the method were the distributions of rv ,  and normal thickness throughout 
the entire meridional projection of the blade row. The normal thickness distribution was obtained 
after a few iterations between the inverse design programme and a three-dimensional structural 
analysis programme16 to ensure the structural integrity of the impeller. The contours of specified 
rV#-distribution, non-dimensionalized by the blade tip speed and tip radius, are shown in 
Figure 2. The rVo-distribution was arrived at by specifying an optimum distribution on the hub 

000 / 1 1 1 ~ 1 1 ~ 1 ~ ~ ~ 1 " ' 1 " ' l " ' 1 " ' 1 " ' 1 " ~ l  

-0 10 0 00 0 10 0 20 0 30 0 4 0  0 50 0 60 0 70 0 80 

Axial Distance ( Z I T t )  

Figure 2. Contours of specified rvodistribution 
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and shroud and then interpolating linearly between these two streamlines to find the overall r c -  
distribution. In selecting the r Ve-distribution, the following points were considered. 

(i) The values of r Ve at the leading and trailing edges were obtained from the turbine’s specific 
work. In the present example the value of rve was 0.85rtU,  at the inlet and zero at the exit. 

(ii) At the leading and trailing edges the derivatives of rVe in the meridional direction were set 
to zero to satisfy the no-incidence and Kutta-Joukowsky conditions respectively (see 
equation (26)). 

(iii) To eliminate the trailing vortex sheets and thereby reduce the exit kinetic energy loss, the 
same values of rVe at the trailing edge were used across the span. 
On the hub the distribution of r Ve between the leading and trailing edges was selected in 
such a way as to minimize the blade twist. The importance of this condition can be seen 
from the modified form of the blade boundary condition16 used to calculate the blade 
shape: 

In this equation f is the wrap angle, m denotes the meridional distance along the blades 
and all the periodic velocities have been neglected. From equation (44) it is possible to see 
that when the radius and meridional velocity are small (as on the hub streamline), the wrap 
angle can become unacceptably high. Therefore, to minimize the wrap angles, the relative 
tangential velocity should be kept to a minimum by specifying a Ve-distribution that 
closely follows the blade speed. 
The shroud streamline is very highly loaded. Therefore, to suppress boundary layer 
separation, it is important to prescribe an rVe-distribution which gives a smooth pressure 
distribution on the shroud. Since by equation (26) the pressure (or Mach number) 
distribution is directly related to the derivative of rc in the meridional direction, care was 
taken to specify an r&-distribution which has a smooth derivative. This can be seen by 
comparing Figure 3 with the Mach number distribution on the designed blade shown in 
Figure 5. 

The above input data were then used in the design programme and the blade shape shown in 
Figure 4 was obtained. In this figure the blade shapes are presented along various axial 
( z  = constant) planes, with the values of z at which the cuts were made shown on the plot. The 
value of z=O.1 mm corresponds to a point very near to the hub leading edge and the value 
z=48.3 mm corresponds to a line going through the trailing edge plane. From this figure it is 
possible to see that the computed blade shape is complicated with a double curvature near the tip. 
Obviously, it is very unlikely that this type of blade shape could have ever been designed by the 
iterative use of analysis or direct methods. The relative Mach number distributions on the 
designed blades are shown in Figure 5 and the contours of Mach number distribution on the 
suction surface are presented in Figure 6. By looking at Figure 5, we can see that a very smooth 
Mach number distribution has been obtained on the shroud. 

In Section 2 we presented two different approaches for determining the flow field in compress- 
ible flow. The approximate (mean density) approach presented is more efficient computationally 
and in fact is about twice as fast as the exact method. However, the approximate method will 
introduce errors in the computation of the flow field and hence the blade shape. In this section we 
shall compare the results of the two methods for the high-speed radial-inflow turbine mentioned 
above. 
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Figure 5. Surface Mach number distributions on designed impeller 

To check the effect of the mean density assumption on the continuity equation, the divergence 
of mean relative velocity ( V - W )  is compared along the hub and shroud in Figures 7 and 8 
respectively. The solid lines correspond to the values of V * W obtained from the approximate 
continuity equation, i.e. W - Vln 0. The dashed lines are the values of V -  W calculated from the 
exact form of the continuity equation of the mean flow, (27), and hence correspond to 
W*Vlnp. In Reference 24, expressions have been derived for the errors in the approximate 
continuity equation in terms of gradients of YV, and the velocity at the blade. These expressions 
were derived by assuming linear pitchwise variation in density. The results shown in Figures 
7 and 8 indicate that the expressions derived for the error terms can provide a good estimate of 
the magnitude of the errors. 

The comparison of the relative Mach number on the hub and shroud is presented in Figure 9, 
where we can see that there is an appreciable difference between the Mach number distributions 
on the shroud, while the Mach number distributions on the hub are almost the same. Finally, the 
effect of the approximation on the blade shape is presented in Figure 10, where camber lines along 
five quasi-streamlines are compared. This plot shows that the approximation has little effect on 
the blade shape. In fact, the maximum absolute difference between the blade shapes is 0.00655 rad 
(0-37"), which is well within the manufacturing tolerance. Therefore we can conclude that the 
approximate (mean density) technique is capable of computing the blade shapes with a high 
degree of accuracy in subsonic flow. 
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Finally, in order to check the accuracy of the design method and to close the loop consisting of 
the specification of I V g ,  the design method to compute the blade shape and the analysis of the flow 
through the designed impeller from which the Y V,-distribution is computed, the flow through the 
designed impeller was computed by using Denton's' three-dimensional inviscid Euler solver. This 
method solves the finite volume form of the unsteady Euler equations of motion subject to steady 
boundary conditions by using a time-marching scheme to obtain the steady state solution. 

The grid used for this calculation consisted of 59 quasi-orthogonals and 13 uniformly spaced 
streamwise and bladewise surfaces. From the computed relative tangential velocity the distribu- 
tion of rVe in the designed impeller was determined and its contours are shown in Figure 11. The 
computed contours of rVe correlate very well to that prescribed, with the main difference 
occurring near the trailing edge where rvB  is negative rather than zero. At first, this small 
difference was attributed to two main causes: (i) the fact that the blade blockage was only 
approximately modelled and (ii) the use of the coarser grid in the time-marching analysis. To 
investigate the former, the blade was redesigned with zero thickness and then the flow through 
it was again computed by Denton's inviscid code. The computed distribution of rVe for the 
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Figure 10. Comparison between approximate and exact approach blade shapes 

zero-thickness design is presented in Figure 12. This is very similar to that computed for the 
original design, apart from a small difference near the leading edge. This is despite the fact that the 
blade shape obtained from the zero-thickness design is about 30% more twisted than that of 
the original design. Therefore we can make two important conclusions from these results: firstly, 
that the design programme can compute the blade shape with a very high degree of accuracy, and 
secondly, that the mean stream surface thickness parameter can, in subsonic flow, model the 
blockage effects quite accurately. As a result of further investigation we found that an appreciable 
amount of entropy (the value of exp(S/R) was as low as 0.93 near the trailing edge, while it should 
be 1.0 everywhere for a potential flow) was present in the time-marching solution, which must 
have been generated by artificial viscosity. Thus we can conclude with confidence that the 
difference in grid size is the main reason for the small discrepancy between the specified and 
computed r V,-distribution. The contours of relative Mach number on the suction surface of the 
blade computed by Denton’s inviscid programme are shown in Figure 13. These also correlate 
very well with that predicted by the design programme. 
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4. CONCLUSIONS 

The development of a fully three-dimensional compressible inverse design method applicable to 
radial and mixed flow turbomachines has been described. The flow is assumed to be subsonic and 
inviscid and the blades are assumed to have negligible thickness, but blade blockage effects are 
approximately accounted for by using a mean stream surface thickness parameter in the 
continuity equation. Two approaches have been presented for solving the compressible flow 
problem. In the approximate approach the pitchwise variation in density is neglected and as 
a result the algorithm is simple and efficient. In the exact approach the velocities and density are 
computed throughout the three-dimensional flow field by employing a fast Fourier transform in 
the tangential direction. The results of the exact and approximate methods have been compared 
for the case of a high-speed radial-inflow turbine. It has been shown that the difference between 
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the blade shapes computed by the two methods is very small and well within the manufacturing 
tolerances. 

To check the accuracy of the design method, the flow through the designed radial-inflow 
turbine was computed by using a three-dimensional inviscid Euler solver and the computed 
distributions of rVo and Mach number were compared with that prescribed. Extremely good 
correlations were obtained, thereby validating the accuracy of the programme. 

The method is currently being extended to transonic flows. The extension to transonic flows is 
important for high-pressure-ratio applications as well as in turbochargers, where as a result of the 
unsteady flow at the exhaust of the diesel engine, maximum turbine work is done at higher 
pressure ratios than those for which the turbines are presently designed. 
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APPENDIX I 

Once the grid in the physical domain has been generated, the relationship 

between (r ,  z)-co-ordinates of the physical domain and (<, q)-co-ordinates of the computational 
domain is established. Then it can be shown that equation (13) takes the following form in the 
computational plane: 

The transformation parameters in this equation are defined by 

J =z', r,,-z,,rr, 

8=zy z ,  + r r,,, 

a= z,' +r,' ,  

y =z: + r z ,  
z,,DR-r,,DZ r ,DZ-z< DR 

J 
fJ= z= 9 

DZ=azt,-2fiz,, ,+ yz,, DR=argr,-2Pr,,,+ yr,,,,. 

J '  

(47) 
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Similarly, equation (23) takes the following form in the computational plane: 

a@.<< - 2B@n,,  + Y @n.. 

where V & l ,  Uqbl and are computed by using the following expressions: 
N / 2  - 1 

uCbl = Re c (a@.< - B@.,) eiknf(C* q) ,  

n =  - N / 2  

N l 2  - 1 

APPENDIX 11: NOMENCLATURE 

number of blades 
blockage factor (equation (9)) 
specific heat at constant pressure 
unit vector 
blade wrap angle (&value at the blade) 
static enthalpy 
radius 
cylindrical-polar co-ordinate system 
sawtooth function 
static temperature 
periodic velocity 
velocity 
relative velocity 
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angular co-ordinate of blade surfaces (equation (1)) 
periodic delta function 
co-ordinates of the body-fitted curvilinear computational domain (Figure 1) 
density 
reference density 
special mean density (equation (23)) 
potential function 
Stokes streamfunction (equation (12)) 
rotational speed 
vorticity 

Subscripts 

bl at the blade 
r radial component 
Z axial component (3D) 
8 tangential component 

Superscripts 

(3 pitchwise mean value 
+ 
- 

(3 periodic quantities 
( 1’ differentiation w.r.t. argument 

relative to upper blade surface (facing positive 8); pressure surface in turbine 
relative to lower blade surface (facing negative 8); suction surface in turbine 
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